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a b s t r a c t

Balanced structural cross sections are models that are fit to incomplete data. The models are under-
constrained with respect to any particular two-dimensional line-length model, but enough data generally
exists to yield a well-constrained area balance solution. Furthermore, the area balance encompasses all
possible line-length solutions. Therefore, where the primary objective of section balancing is the deter-
mination of horizontal shortening magnitude, area balancing provides an analytical solution. We use this
analytical solution to develop a comprehensive, robust analysis of the uncertainty in shortening estimates
resulting from cross-section balancing. The analytical solution allows us to propagate errors formally on
the input parameters d stratigraphic thicknesses, depth to decollement, eroded hanging wall cutoffs d

through the equations and produce the resulting uncertainty on the magnitude of shortening. Balanced
cross sections from the Subandean belt of the Central Andes are used to demonstrate the relative
importance of stratigraphy and eroded hanging wall cutoffs in the contribution to the overall error.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Balanced cross sections have been a fundamental tool of the
structural geologist for more than 50 years, providing both
a geometric model of the subsurface as well as an estimate of the
shortening in a specific region of an orogen. Once derived, short-
ening magnitudes are often used as input “data” for large-scale
geologic models, such as geodynamic models or palinspastic
restorations. For example, Kley and Monaldi (1998) use surface
shortening estimates in the Central Andes to suggest that crustal
thickness cannot be derived from shortening alone, and thus call on
underplating or flowof lower crustal material to produce the excess
thickening. While this type of analysis may help advance tectonic
modeling, these models rely on shortening data that do not include
a rigorous assessment of the uncertainty. Without a standardized
way to assess the goodness of fit of a specific balanced cross section
to the data on which it is based, no independent method exists to
determine the validity of conclusions based on shortening esti-
mates from line-length balanced sections.

Though often well known to the structural geologist who con-
structed the original line-length balanced section, users of the
calculated shortening values may overlook the uncertainty
inherent in any cross-sectional model as well as the fact that the
cross sections are extrapolated from incomplete data. Viable cross
sections may follow generalized rules for construction, assuring
nger).

All rights reserved.
that the cross section does not violate physical laws such as the
continuity and compatibility equations. Such rules, however, do
not guarantee that a calculated shortening value has negligible
uncertainty.

We present a new method to calculate a rigorous estimate of
uncertainty in shortening values from regional line-length
balanced sections. This method includes all potential sources of
error on input parameters except for the assumption of plane strain
deformation. Based on area balancing, the method encompasses all
possible kinematic fold-fault models, accommodates shortening
due to plane strain deformation smaller than the scale of the
cross section, and is computationally simple. By including a full
assessment of the uncertainties in a cross section, it is possible to
propagate formally the known, measurable uncertainties from the
input data through the shortening calculation and determine an
uncertainty estimate for the final shortening value.

To demonstrate the application of the concept, we test the
method on several cross sections from the Subandean belt of the
Central Andes. We compare between blind and emergent thrust
belts, as well as sections drawn by the same and different authors.
While we describe the results of the formal approach, the primary
outcome from this test is to emphasize that the goodness of the
calculated uncertainty values depends on the goodness of the
initial uncertainties on the input data.

2. Existing methods of cross-section construction

The physical justification for all section balancingmethods arises
from the continuity equation, which states that the change in
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density of a volume with respect to time plus the flux of mass into
and out of the volumemust be equal to zero (e.g., Malvern,1969). In
volumebalancing,weassume that the change indensitywith time is
also zero, yielding the incompressibility condition, requiring the
divergence of the velocity field to be zero. For area balancing, one
additional condition is required: plane strain, or the condition that
there is flow of material only in the plane of the cross section. This
final condition is justified where structures are both long and
continuous parallel to the strike, as is true in many thin-skinned
fold thrust belts. Specific fold-fault models, including trishear
(ZehnderandAllmendinger, 2000), faultbend-and faultpropagation-
folding (Hardy, 1995, 1997), explicitly use incompressibility, but
the majority of balanced cross sections are geometry-specific and
therefore more restrictive.

2.1. Line-length balancing

Line-length balanced cross sections are a subset of area-
balanced sections. In addition to the assumptions inherent to area
balancing, line-length balancing relies on the assumption that
parallel folding occurs via shear parallel to bedding, making the
stratigraphic horizon lines of no finite longitudinal extension. Thus,
the shortening magnitude is the difference between bed length in
the deformed state and the same bed in the undeformed state. This
method requires a cross-sectional model of the subsurface geom-
etry that tries to replicate the subsurface geology and is governed
by generalized empirical rules to help insure viability (Bally et al.,
1966; Dahlstrom, 1969; Elliott, 1983; Price and Mountjoy, 1970;
Woodward et al., 1989).

Shortening values from line-length balancing are commonly
cited as a “minimum estimate”, which is typically the only uncer-
tainty referenced. Thisminimumestimate ariseswhere the hanging
wall cutoffs of emergent thrusts in a section have been eroded
(Fig. 1). Because the geologist does not know howmuch bed length
is missing due to erosion, the stratigraphic horizons are lined up to
make the displacement as small as possible in the restored section.

However, eroded hanging wall cutoffs are only one of the many
potential sources of uncertainty in a balanced section and thus
“minimum estimate” is misleading (Allmendinger, 2004; Elliott,
A
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Fig. 1. Cross section illustrating the “minimum shortening estimate” commonly
associated with line-length balanced cross sections; (A) shows the actual section in the
absence of erosion; (B) shows the same section where the hanging wall cutoff has been
eroded. The restoration in the bottom panel of (B) is minimum because the geologist
does not know how far to the right the hanging wall ramp would lie.
1976; Sheffels, 1990). Errors may also arise due to uncertainties in
depth to decollement, incorrect structural model of the subsurface,
poorly known initial stratigraphy, and deformation at scales smaller
than the resolution of the section (e.g., Marrett and Allmendinger,
1992). One possible way to account for variation in shortening
from all but the last of these sources of error would be to draft a large
suite of line-length balanced sections along the same transect,
spanning the range of possible internal geometries and initial
conditions in a type of hand-craftedMonte Carlo simulation. Though
possible for individual structures amenable to numerical simulation
(e.g., Allmendinger, 2004; Brooks et al., 2000), this approach is
impractical for regional sections across many structures.

2.2. Area balancing

Area balancing, based only on the assumption that the cross-
sectional area of the modern, deformed thrust belt is equal to the
area of the undeformed stratigraphic section (Chamberlin, 1910,
1919b, 1919a, 1923; Hossack, 1979; Mitra and Namson, 1989), is
a more generalized method than line-length balancing. Because
area balancing provides a method of calculating shortening that
does not depend on one specific subsurface geometric interpreta-
tion, the method does not provide the geometric or temporal
resolution of line-length balancing. However, this independence is
also the greatest strength of area balancing: the method encom-
passes any two-dimensional kinematic fold model that fills the
required area and captures all scales of deformation. This attribute
of area-balanced cross sections makes them uniquely suited to the
task of determining uncertainty in shortening magnitude.

3. Error analysis via area balancing

The horizontal shortening in any balanced section is the differ-
ence between the initial and final widths of the section, which is not
the same as the principal shortening axis (e.g., Cladouhos and
Allmendinger, 1993). For area balancing, we define the initial area
as a simple polygondefinedby the stratigraphic thicknesses and their
uncertainties at each end and the initial width, which is unknown at
the start of the calculation (Fig. 2). Unlike the case of line-length
balancing, the areas in both the initial and the final (i.e., deformed)
state can be calculated analytically. Thus, the errors can be propa-
gated formally, which is a major advantage of this approach. We use
the terms “uncertainty” and “error” interchangeably.

3.1. Analytical determination of shortening and error propagation

For the area of the deformed section, we use the concept of an
enveloping polygon to encompass the pre-growth strata in the
section. The area of any polygon can be described analytically as
(e.g., Harris and Stocker, 1998):

A ¼ 1
2

Xn�1

i¼0

ðxiyiþ1 � xiþ1yiÞ; (1)

where A is the area of the polygon, n is the number of vertices in the
polygon, and (xi, yi) are the Cartesian coordinates of each vertex.
The calculated uncertainty, or error, on the deformed area (dA) is
a function of the uncertainty on each specific vertex (dxi, dyi)
(Fig. 1A). As discussed below, these uncertainties encompass both
those associated with eroded hanging wall cutoffs and depth to
decollement. By assuming a Gaussian distribution of uncertainty
values, we use the standard formula to propagate error through the
area calculation (Bevington and Robinson, 2003; Taylor, 1997),
known as the sum in quadrature:
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Fig. 2. Hypothetical area balance with attendant uncertainties. Three different “enveloping polygons” are shown in (A) with increasing number of vertices and thus increasing
complexity. (B) Assignment of hypothetical uncertainties (error bars) to each of the 25 vertices in the most complex enveloping polygon. (C) The stratigraphic wedge in the initial
state, as well as the horizontal shortening. Variables are the same as those used in the text.
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If the errors are not random and uncorrelated, then one should
use, instead, the maximum error estimate:

dA �
���� vAvx1

����dx1 þ
���� vAvy1

����dy1 þ/þ
���� vAvxn

����dxn þ
���� vAvyn

����dyn: (2b)

In the rest of this paper, we will show the error in quadrature in
equation “a” is accompanied by the maximum error estimate in
equation “b”.

Because the deformed areamust equal the undeformed area, the
initial width of the section (Wi � dWi) can be calculated from the
area in Eq. (1) and the two stratigraphic thicknesses at the “west”
and “east” ends of the section (TW, TE) (Fig. 1A):

A ¼ ðWiTEÞ þ
�
Wi

ðTW � TEÞ
2

�
¼ Wi

�
TW þ TE

2

�
: (3)

The original width is calculated by rearranging Eq. (3):

Wi ¼
2A

ðTE þ TW Þ ¼ 2AðTE þ TW Þe1: (4)

By definition, A in Eqs. (3) and (4) must be the same as A in
Eq. (1). The uncertainty for the initial width is:

dWi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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dWi ¼
����vWi

vA

����dAþ
����vWi

vTE

����dTE þ
����vWi

vTW

����dTW (5b)
where dTW and dTE are the uncertainties on stratigraphic thick-
nesses and dA is the area error calculated in Eq. (2).

Finally, knowing the initial width (Wi � dWi) and the final,
deformed width (Wf � dWf) (Fig. 1) allows us to calculate the
shortening, S, and its uncertainty, dS, across the fold and thrust belt:

S ¼ Wf �Wi (6)

and

dS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vS
vWi

dWi

�2

þ
 

vS
vWf

dWf

!2
vuut : (7a)

dS ¼
���� vSvWi

����dWi þ
����� vSvWf

�����dWf (7b)

We can also calculate the percent horizontal shortening and its
error:

S% ¼ 1�Wf

Wi
¼ 1�WfW

�1
i ; (8)

and

dS% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vS%
vWi

dWi

�2

þ
 
vS%
vWf

dWf

!2
vuut (9a)

dS% ¼
����vS%vWi

����dWi þ
����� vS%vWf

�����dWf : (9b)

To calculate the uncertainty in shortening magnitude and
percentage, errors must be specified for the input parameters: the
vertices of the enveloping polygon, the stratigraphic thicknesses at
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the two ends of the line of section, and the deformed width of the
thrust belt (Fig. 2). The errors for the enveloping polygon, dxi and dyi,
encompass both the uncertainties in the depth to the decollement
and those associated with any eroded hanging wall cutoffs. Inde-
pendent uncertainties are assigned to each vertex such that contacts
at the surface generally have negligible error but those in the
subsurface have greater error, and those at eroded hanging wall
cutoffs have the greatest uncertainty of all. The errors on the strati-
graphic thicknesses, dTE and dTW, would ideally come frommeasured
sections where available, but more commonly will come from map
thicknesses, which would likely have larger errors. All other sources
of error are propagated from dxi, dyi, dTE, and dTW (Fig. 1A).

3.2. Minimal polygon complexity necessary to capture accurate
shortening

Using polygons to envelop the cross-sectional area raises the
important question of how complex the polygonmust be to capture
Fig. 3. Location map of the Central Andes showing the balanced cross-sections analyzed from
by McQuarrie (2002) and McQuarrie et al. (2008); section C, located in northernmost Argent
the GTOPO30 data set.
accurately the shortening for the region. One can imagine two
extremes: a simple rectangle enclosing the entire deformed area or
a very complex polygon with hundreds of vertices that replicates
the outline of the specific line-length balanced cross section.
Between these two cases lies an ideal polygon that captures the
minimum complexity needed to calculate a robust, stable area
estimate but is not heavily reliant on the modeled subsurface
geometry. While a polygonwith 5 vertices is clearly a poor estimate
of the subsurface geology (Fig. 2), a polygonwith 75 vertices would
likely be overly restrained by the originally proposed line-length
balanced model.

To determine the minimum number of vertices necessary for
a robust shortening calculation, we iterate the analysis with increas-
ingly complicated enveloping polygon geometries (Fig. 2) until the
solutions for both the shorteningmagnitude anduncertainty stabilize
(Fig. 4). For the Subandean test cases described in the subsequent
section of this paper, the shortening solutions stabilize for polygons of
approximately 20 or more vertices, far fewer than needed to capture
the Subandean belt. Sections A and B, located in Bolivia, were published and described
ina, was published by Echavarría et al. (2003). Shaded relief topography rendered from



Fig. 4. (A) Cross section from the northern Bolivian Subandean belt, modified after McQuarrie (2002). The red dashed lines show the suite of enveloping polygons used in the
analysis. (B) The initial stratigraphic wedge for the northern section. (C) Geologic cross section for the southern Bolivian Subandean Belt, modified after McQuarrie (2002). The red
dashed lines show the suite of enveloping polygons used in the analysis. (D) The initial stratigraphic wedge for the southern Bolivia section. (E) Plot of number of polygons in the
enveloping polygon versus horizontal shortening magnitude in kilometers for both the northern and the southern sections of McQuarrie (2002). Error bars show the uncertainty at
each point in the analysis; note overlap of error bars for northern and southern sections. The solution stabilizes at about 20 vertices. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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the exact outline of the line-length balanced section on which the
polygons are based. This stability is likely due to compensatingerrors:
after 15 or 20 vertices, adding another vertex, with its associated
uncertainty, does not significantly change the overall solution.
However, it is true that some crude approximation of the line-length
section is also necessary, reflecting the fact that the polygons with
fewervertices invariably includea significant amountofgrowthstrata
or air that was never filled with subsequently eroded rock.

4. Test cases from the Subandean belt

To demonstrate the application of our area balancing method,
we use three sections from the Subandean belt of Bolivia and
northern Argentina (Fig. 3), two dominated by emergent thrusts
(McQuarrie, 2002; McQuarrie et al., 2008) and the other blind
(Echavarría et al., 2003). These three sections allow us to compare
the results of sections drawn by the same authors (McQuarrie, 2002;
McQuarrie et al., 2008) and to compare between different authors
(Echavarría et al., 2003; McQuarrie, 2002). The quality of our error
analysis depends on using reliable uncertainties on the input data;
one of the authors of this paper (RWA) was involved with the
construction of the Echavarría cross section and Nadine McQuarrie
(pers. comm., 2010) has graciously shared her insight on the
uncertainties involved in the construction of her sections. We show
the input parameters and uncertainties that we used in our analysis
in Table 1 and the shortening results based on those values,
compared to previous work, in Table 2. However, the best practice,
as described below, is a rigorous assessment of errors on the input
parameters during construction of cross-sections. Thus the results
presented in these test cases should be viewed as a proof of concept.



Table 1
Reference case inputs.

Northern
Bolivia

Southern
Bolivia

Northern
Argentina

Stratigraphic thickness & errors 2.1 � 0.8 km 5.6 � 0.8 km 2.9 � 0.6 km
8.10 � 1.2 km 8.5 � 0.8 km 4.6 � 0.4 km

Final (Modern) width & errors 96 � 1 km 113 � 1 km 82 � 1 km
Decollement error �0.75 km �0.75 km �0.5 km
Subsurface vertices error �0.8 km �0.8 km �0.6 km
Surface vertices errors �0.1 km �0.1 km �0.1 km
Eroded hanging wall errors �3.0 km �3.0 km �1.0 km

Table 2
Comparison of previous line-length balancing with area balancing.

Northern
Bolivia

Southern
Bolivia

Northern
Argentina

Line-length balance (McQuarrie,
2002; Echavarría et al., 2003)

66 � 7 km 67 � 7 km 45 km
41 � 2% 32 � 2%

Area balance � Gaussian error
(this study)

75 � 27 km 64 � 17 km 48 � 15 km
44 � 9% 36 � 6% 37 � 7%

Area balance � maximum error
(this study)

75 � 72 km 64 � 49 km 48 � 44 km
44 � 24% 36 � 18% 37 � 22%
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4.1. Bolivian sections

Our area balancing method yields 75 � 27 km of shortening
when applied to the northern Bolivia section and 64�17 km for the
southern section (Table 2, Fig. 4). Our estimates do not include
shortening on the trailing thrusts in the sections. These uncer-
tainties on shortening have been calculated based on input error
values for the deformed width, the location of each polygon vertex,
and for the stratigraphic thicknesses in the undeformed state (Table 1).
To examine the effect that a single parameter (e.g., stratigraphic
thickness, decollement depth, or eroded hanging wall cutoffs) has on
the total uncertainty, we set all errors, except for the parameter of
interest, equal to zero and then ran the analyses over again (Table 3).
Note that total error should generally be less than the sum of
the individual errors for a Gaussian distribution. If the input
uncertainties are not independent and uncorrelated, then
the errors no longer have a Gaussian distribution and one would
use the maximum error estimate, which is considerably larger
(Table 2).

Percent shortening is a more ambiguous measure because it is
so highly dependent on initial and final lengths. Nonetheless we
cite them here because McQuarrie et al. (2008) claimed there was
a significant difference between percent shortening in the northern
and southern cross sections. As shown in Table 2, the shortening
percentage values for the two regions in Bolivia are similar to those
calculated via line-length balancing. This is not surprising given
that we used McQuarrie’s sections as the starting point for our area
analysis. However, the errors that we calculate are three to five
times larger than the 2% error cited by McQuarrie et al. (2008). The
considerable overlap in error envelopes for the two sections (Fig. 4)
Table 3
Contributions to total error.

Error Northern
Bolivia

Southern
Bolivia

Northern
Argentina

Total �27 km �17 km �15 km
From stratigraphic

thickness
�24 km �16 km �12.5 km

From decollement �7 km �1 km �1.1 km
From eroded hanging wall �2 km �4 km �1.2 km
shows that their conclusion of a coupling between tectonics and
climate based on similar shortening percentages is not robust.

4.2. Argentine section

To analyze the differences in uncertainty values for sections
dominated by blind thrusts as compared to emergent thrusts, we
calculate shortening and uncertainty values for the section in
northern Argentina (Echavarría et al., 2003). For simplicity, we
balance the section to the east of the Nogalito Range (Fig. 5)
because, west of this range, the section, as drawn, cuts into the
basement thrust. We calculate 48 � 15 km shortening for the
eastern part of the section, compared to 45 km shortening deter-
mined via line-length balancing (Echavarría et al., 2003). As in the
case of the Bolivian sections, Table 3 shows the effect that each
parameter has on the overall error.

The shortening and uncertainty results from area balancing for
the two southernmost sections are very similar: 36 � 6% for the
Bolivian section (McQuarrie et al., 2008) and 37 � 7% for the
northern Argentine section (Echavarría et al., 2003). The percent
shortening values for both sections agree with those calculated via
line-length balancing, and it is the similarity between the uncer-
tainty values that is noteworthy. While the region in Argentina and
southern Bolivia is well studied, with both seismic and drill hole
data available (Belotti et al., 1995; Dunn et al., 1995; Sempere,1995),
the section in northern Bolivia is not as well known. However, we
use similar initial uncertainty values for all three sections to
demonstrate the method and not to determine definitively the
uncertainty associated with each section.

4.3. Sensitivity of total error to different parameters

As is abundantly clear from these Subandean examples, the
error on stratigraphic thickness is a major source of shortening
uncertainty. In all sections, 8e40% error in stratigraphic thicknesses
on the two ends of a cross section accounts for 80% or more of the
total error in shortening determination (Table 3). Even for
a reasonably well known section, a 10% uncertainty in stratigraphic
thickness contributes 50e75% of the overall shortening error. If
one’s only objective were to calculate shortening, significantly
greater reduction in errors could be achieved through field studies
necessary to improve knowledge of stratigraphic thickness than
one could produce by carrying out amuchmore expensive program
of subsurface exploration. Granted, other advantages exist to
collecting data from subsurface exploration, especially the knowl-
edge of subsurface geometry!

The relative importance of decollement depth and eroded
hanging wall cutoff depends on the specific sections (Table 3). In
a fully emergent belt with a large number of eroded hanging wall
cutoffs, the contribution of this factor to the overall uncertainty
would increase. In line-length balancing, because one determines
the initial width simply by adding up the lengths of individual beds,
the uncertainty in hanging wall cutoff would translate directly into
shortening magnitude uncertainty. This is not the case in area
balancing. For example, the Argentine section has onemajor eroded
hanging wall cutoff, changing the uncertainty in that cutoff from
1 to 5 km only changes the uncertainty in shortening by 1 km (from
�15 km to �16 km) for the reference case.

5. Accurate determination of errors on input parameters

As the test cases show, accurate determination of input errors is
critical. Our method does not alleviate this task but only makes it
clear what the key parameters are and, once determined, how to



Fig. 5. Diagram similar to Fig. 4, showing the results of the analysis of Echavarría et al.’s (2003) cross section from the northern Argentine Subandean belt. (A) Geologic cross section
for the southern Bolivian Subandean Belt, modified after Echavarría et al. (2003). The red dashed lines show the suite of enveloping polygons used in the analysis. (B) The initial
stratigraphic wedge for the section. (C) Plot of number of polygons in the enveloping polygon versus horizontal shortening magnitude in kilometers. Error bars show the uncertainty
at each point in the analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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propagate those errors through the calculation to produce realistic
errors for shortening magnitude.

5.1. Deformed state: the enveloping polygon

Assigning uncertainty to each of the vertices in the enveloping
polygon accounts for a number of different types of geological
errors. While there is uncertainty inherent to choosing a specific
fold kinematic model, an area balancing method eliminates this
uncertainty by accommodating all cylindrical fold models that can
occupy the same area.

The vertices at the base of the polygon describe the position and
uncertainty in the decollement depth and dip. The errors assigned
to these vertices would depend on the source and quality of datad
borehole, reflection seismic, and stratigraphic d that the geologist
used to identify the decollement. If stratigraphic data are used to
define the decollement depth, then the assumption that the errors
are random and uncorrelated would not be valid, requiring the use
of the maximum error estimate (e.g., Table 2) rather than assuming
a Gaussian distribution. Other errors on subsurface vertices would
likewise depend on the availability and quality of subsurface data.
For example, is a broad syncline of growth strata imaged clearly on
seismic data or is it pierced by a well? Depending on the placement
of each vertex and the quality of the available data, the uncertainty
associated with a specific polygon could be quite variable.

The errors on the vertices that lie above the present erosional
surface present different challenges. Where the faults are largely
blind, one can geometrically project the crest of an eroded anti-
cline based on stratigraphic thickness and some basic assump-
tions of fold kinematic model (or range of models). The largest
individual uncertainties on vertices in the deformed state prob-
ably are those associated with eroded hanging wall cutoffs,
though they do not contribute that much to the overall uncer-
tainty. Although these are accommodated via minimum short-
ening estimates in line-length sections, there is a reasonable
maximum projection of the hanging wall cutoff as well. If the
section of interest lies close to the tip line of an emergent thrust,
one could use an up-plunge projection and some model of the
displacement gradient profile along a fault (Higgs and Williams,
1987; Marrett and Allmendinger, 1990; Walsh and Watterson,
1987, 1989) to determine where the now eroded hanging wall
cutoff should lie. More commonly, we suspect, people will use
their intuition as to the probable location of the cutoff and simply
select a large uncertainty.

5.2. Initial state: the stratigraphic wedge

As we have seen, uncertainty in initial stratigraphic thickness is
a major source of error that is rarely included in line-length
sections. To estimate this uncertainty, as well as improve the overall
shortening estimate, one might measure several stratigraphic
sections at either end of the now deformed package. Alternatively,
because data on balanced cross sections are commonly projected
from a corridor of finite width on either side of the section, one
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might use the variation in map thickness that occurs along strike
within that corridor.

Asmentionedpreviously, one sourceof error inbalanced sections
is the shortening that occurs at scales below the resolution of the
section (Marrett and Allmendinger, 1990, 1991, 1992). This might
include initial layer parallel shortening, pervasive minor faulting
and folding, pressure solution and cleavage development, etc. (e.g.,
Geiser, 1988; Groshong and Epard, 1994; Groshong, 1994; Hossack,
1979). Hypothetically, simply by doing an area balance, we capture
this deformation as well. However, the ability to do so depends on
one’s ability to determine true initial stratigraphic thickness prior to
the start deformation. Because we measure stratigraphic sections
today, in the deformed state, it is muchmore difficult to ensure that
deformation due to pervasive mechanisms has not been included in
our determination of stratigraphic thickness.

Pressure solution and cleavage development are commonly
associated with volume loss, bringing into question the plain strain
and constant volume or area assumptions. Area loss balanced by
area gain in another part of the section presents no particular
challenges to the error propagation method described here. An
average net area loss from the entire section could easily be
accommodated by adding a term expressing that average area loss
(and uncertainty) to Eq. (2). It would be very difficult to determine
an accurate average area loss, however.

5.3. What is the true magnitude of the shortening?

Determining a single value of shortening magnitude for a belt is
somewhat ambiguous and arbitrary, and percent shortening is even
more fuzzy. Take the case of McQuarrie’s section in southern Bolivia
(McQuarrie, 2002;McQuarrie et al., 2008). The regional pin lines are
located 10e15 kmeast of the thrust front,which reduces the percent
shortening by inclusion of a significant width of undeformed
section, but does not affect the magnitude of shortening. More
subtle, but equally important, in a line-length balanced section,
different stratigraphic horizons can have different shortening
magnitudes because of internal duplexing of some layers but not
others (McQuarrie, pers. comm., 2010). Where one knows the
structural geometry a priori, this could be very important because
A

B

C

Fig. 6. Illustration of the ambiguities of the shortening magnitude calculation. (A) Outline
2002). (B) Outline of McQuarrie’s (2002) line-length reconstruction of the section in (A). N
different stratigraphic horizons. (C) The equivalent area balance of the deformed gray polygo
shortening magnitude.
the initial undeformed polygonwould not be a simple wedge as we
have portrayed it but a more complicated polygon, with multiple
steps on the internal side (Fig. 6). However, we usually do not know
the structural geometry ahead of time and duplexes are commonly
used to accommodate space problems that may actually arise from
poorly known stratigraphy. Finally, the present daywidth of a belt is
commonly determined by its width at the surface, but its maximum
width at depth is longer because of the dip of the trailing thrust.
McQuarrie (2002) avoided this ambiguity by defining the
Subandeanbelt by thebasement cutoff. This definition is notwithout
problems d McQuarrie et al. (2008) use a different and more
traditional definitiond both becausewedo not know the location of
that cutoff, and because it results in provinces that overlap (i.e., the
eastern boundary of the Interandean belt lies east of the western
boundary of the Subandean belt). Using onemeasure rather than the
other can change the magnitude of shortening by many kilometers,
even though the shortening error does not changemuch because the
uncertainty on final width contributes little to the overall error.

5.4. Can we determine true probabilistic uncertainties?

Ideally, one would like to be able to state the shortening at, the
alpha-95confidence level, forexample. Theerrorpropagation thatwe
describeherewouldallow for thisbut the real question iswhether the
input data allow for the determination of true probabilistic uncer-
tainties, which depends on repeated measurements of the same
parameter. While one can imagine approaches to determine the one
or two sigma errors on the depth to decollement or the stratigraphic
thickness at one end of the cross section or the other, these
approaches would probably require more effort than most people
have traditionally put into balanced cross-section construction.

What, then, is the advantage of carrying out error propagation if
the probabilistic errors will not routinely be determined? Most
importantly, it is the best way of quantitatively linking the uncer-
tainty on the input parameters, even if determined only informally,
to the likely error on the shortening. More specifically, error
propagation provides a mechanism for investigating the effects of
different types of uncertainty on the final solution. Most obvious is
the previously under-appreciated effect of stratigraphic thickness,
of the deformed pre-growth strata for the southern Bolivia cross section (McQuarrie,
ote the sawtooth left side of the section is due to different amounts of shortening at
n shown in (A). Horizontal double headed arrows show different permissible values of
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but this also applies to the relative importance of uncertainty in
decollement position or eroded hanging wall cutoffs for any
particular section. Finally, it provides a mechanism for specifying
where one’s preferred line-length solution lies within the range of
plausible solutions due to different types of fold kinematic models.

6. Conclusions

Calculating the magnitude of shortening in a mountain belt is
the end result of a structural model that is constructed from data
that have quantifiable errors. Without propagating these errors
through the analysis, structural geologists have no scientifically
legitimateway of determining whether two parts of an orogen have
distinct shortening values and therefore that external processes,
climate, or plate boundary interactions explain those differences.
Likewise, other uses of structural shortening data d geodynamic
modeling, paleogeographic reconstructions, etc. d are equally
suspicious if the uncertainty on their input data, the shortening
value, cannot be quantified accurately.

Line-length balanced sections with errors assessed via area
balancing are entirely complementary. Line-length balanced sections
make predictions in the form of detailed geometric models of the
subsurface, which can be tested and refined. The internal structural
models are particularly useful for identifying and assessing potential
sources of subsurface resources or the sequences in which the
structures developed. Nonetheless, the practice of using only one
line-length balanced section to calculate shortening and using only
the hanging wall cutoffs to estimate uncertainty is flawed when the
primary objective is a thorough estimate of orogenic shortening.

The method we have presented here is only the first step in
producing a complete analysis of errors in shortening magnitude.
Future improvements will account for the considerable likelihood
that the initial stratigraphic geometry is more complicated than
a simple wedge-shaped foreland basin. Additionally, a scheme to
include basement thrusts, internal pinch-outs, and preexisting
deformation would allow for the analysis of more regions. Finally,
the natural progression of this work would be to expand the
method into three dimensions and calculate shortening estimates
by volume balancing.
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